Midterm 1: MAT 319 and MAT 320

Instructions: Complete all problems below. You may not use calculators or other aides, including cell phones and books. Show all of your work. **Be sure to write** your name and student ID on each page that you hand in.

1.(20 pts) Let

$$a_n = \left(\frac{4+2(-1)^n}{5}\right)^n.$$

Compute the limsup and limit of $|a_n|^{1/n}$ and $|a_{n+1}/a_n|$.

Observe that $\frac{2}{5} \leq |a_{\eta}|^{l_{\eta}} = \frac{4+2(-1)^{n}}{5} \leq \frac{6}{5}$ Since the upper & lower bounds are achieved infinitely often $\left|\lim\sup_{n\to\infty}\left|a_{n}\right|^{\prime \prime \prime}=\frac{e}{5},\quad \lim\inf_{n\to\infty}\left|a_{n}\right|^{\prime \prime \prime}=\frac{2}{5}.$ Next observe that $\left| \frac{q_{n+1}}{q_n} \right|_{-} = \left(\frac{4+2(-1)^{n+1}}{5} \right)^{n+1} = \left(\frac{4+2(-1)^{n+1}}{5} \right) \left(\frac{2-(-1)^n}{2+(-1)^n} \right)^{n+1}$ Since $\frac{4+2(-1)^{n+1}}{5}$ stays inside $\left(\frac{2}{5} \right) \frac{6}{5}$ and $\left(\frac{2-(-1)^{n}}{2+(-1)^{n}}\right)^{n} \rightarrow \infty$ for n = odd we find $\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right| = \infty$. $\exists \text{mice} \left(\frac{2-(-1)^{n}}{2+(-1)^{n}}\right)^{n} \Rightarrow \exists \text{for } n = even we find \lim_{n \to \infty} \inf \left|\frac{q_{n+1}}{q_{n}}\right| = 0.$ 1

2.(20pts) The Fibonacci sequence F_n is defined inductively by

- $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$,
- $F_0 = 0$, and $F_1 = 1$.

Thus $F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5$ and so on.

a) Show that there are constants α and β for which

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$$
 for $n \ge 0$.

b) Determine if the following series of Fibonacci number reciprocals converges:

a) To find
$$\alpha_1\beta$$
 solve $n=1$, $n=2$ is $\alpha_1 - \beta_1 = F_1 = 1$, $\alpha_1 - \beta_2^2 = F_2 = 1$.
Get $\alpha_1 = \frac{1+\sqrt{5}}{2}$, $\beta_1 = \frac{1-\sqrt{5}}{2}$. Claim : $F_n = \alpha_1 - \beta_1^n$ for all $n \ge 0$.
Proof : Use induction. Clearly if is true for $n=0,1$. Assume
if is true for n and prove if for $n+1$:
 $F_{n+1} = F_n + F_{n-1} = \alpha_1 - \beta_1^n + \alpha_1 - \beta_1^{n-1}$
 $= \alpha_1^n (1 + \frac{1}{2}) - \beta_1^n (1 + \frac{1}{2}) = \frac{\alpha_1^{n+1} - \beta_1^{n+1}}{\sqrt{5}}$

Since $|+\frac{1}{4} = \alpha$, $|+\frac{1}{6} = \beta$. b) $\sum_{n=0}^{\infty} \frac{1}{F_n} = \sum_{n=0}^{\infty} \frac{\sqrt{5}}{\pi^n - \beta^n} = \sum_{n=0}^{\infty} \frac{1}{\pi^n} \cdot \frac{\sqrt{5}}{1 - (\frac{\beta}{4})^n}$ Since $|\frac{\beta}{4}| < 1$ we have $\frac{\sqrt{5}}{1 - (\frac{\beta}{4})^n} \leq 2\sqrt{5}$ for n large. Hence the Series Converges by the comparison test where the corporison Series is the geometric series $\sum_{n=0}^{\infty} \frac{2\sqrt{5}}{\pi^n} = \frac{2\sqrt{5}}{1 - \alpha^{-1}}$

3.(20pts) Let
$$a_n$$
 be a sequence. Suppose that $a_n \neq 0$ for all n , and that the limit $L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} | exists.$
a) Prove that if $L < 1$ then $\lim_{n \to \infty} a_n = 0$.
b) Prove that if $L > 1$ then $\lim_{n \to \infty} a_n = 0$.
Using the definition of $\lim_{n \to \infty} |a_n| = +\infty$.
Using the definition of $\lim_{n \to \infty} |a_n| = +\infty$.
 $\lim_{n \to \infty} |a_n| \leq a < |$ if $L < |$ for all $n \geq N$.
 $\left(\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} \mid \geq a < |$ if $L < |$ for all $n \geq N$.
 $\left(\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} \mid \geq \beta > |$ if $L > 1$
a) Take any $n > N$ and observe that
 $|a_n| = |\frac{a_n}{a_{n+1}}| - --|\frac{a_{n+1}}{a_n}| \leq a^{n-N}$.
Hence $\left| \lim_{n \to \infty} a_n \right| = \lim_{n \to \infty} |a_n| \leq \sqrt{-N} \lim_{n \to \infty} a_n \geq 0$.
b) In this case the same expression $\chi^n \text{ and } |\geq \beta^{n-N}$.
Hence $\lim_{n \to \infty} |a_n| \geq \lim_{n \to \infty} p^{n-N} = \infty$ which implies
there $\lim_{n \to \infty} |a_n| \geq \lim_{n \to \infty} p^{n-N} = \infty$ which implies
that $\lim_{n \to \infty} |a_n| = m$.

4.(20pts) Let a_n be a sequence of nonnegative numbers ($a_n \ge 0$ for all $n \ge 0$). Show that we have

$$\sum_{n=0}^{+\infty} a_n = \sup \left\{ \sum_{j \in J} a_j \mid J \subset \mathbb{N} \text{ finite subset} \right\}.$$

Define $A = \left\{ \sum_{j \in J} a_j \right\} \left\{ J \subset \mathbb{N} S \text{ finite subset} \right\}.$

By definition

of the Sum, $\sum_{N=0}^{\infty} a_n = \lim_{N \to \infty} S_N$ where $S_N = \prod_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_n$.

Since $S_N \notin A$ for each N , we have $\lim_{N \to \infty} S_N \leq S_N \not A$

and hence $\sum_{n=0}^{\infty} a_n \leq S_N \not A$. On the other hand

and hence $\sum_{n=0}^{\infty} a_n \leq S_N \not A$. On the other hand

 $\sum_{n=0}^{\infty} a_n$ is an upper bound for A since (by $a_n \geq S$)

 $\sum_{n=0}^{\infty} a_n = \sum_{j \in J} a_j$ for any J . Hence, by definition

 $\sum_{n=0}^{\infty} a_n \geq \sum_{j \in J} a_j$ Sup $A \leq \sum_{n=0}^{\infty} a_n$. It follows

of Sup we have $\sum_{n=0}^{\infty} A$.

5.(20pts) Let f and g be two functions with domain \mathbb{R} , such that f(x) < g(x) for all $x \in \mathbb{Q}$. Prove that if f and g are continuous then the inequality $f(x) \leq g(x)$ holds for all $x \in \mathbb{R}$.

Let
$$h(x) = g(x) - f(x)$$
. Then this is equivalent to the
following. Claim: Let h be continuous on \mathbb{R} with $h(x) > 0$
for all $x \in \mathbb{R}$, then $h(x) \ge 0$ for all $x \in \mathbb{R}$.
 $\beta u = f$: Suppose $\exists x_0 \notin \mathbb{R}$ with $h(x_0) < 0$. There is
a sequence $\exists x_n \notin \mathbb{R} = 1$ in $h(x_n) = x_0$. Since
h is continuous we have $\lim_{n \to \infty} h(x_n) = h(x_0) < 0$. On
the other hand since $x_n \notin \mathbb{R}$ we have $h(x_n) > 0$
the other hand since $x_n \notin \mathbb{R}$ we have $h(x_n) > 0$
the other hand since $x_n \notin \mathbb{R}$ we have $h(x_n) > 0$
the other hand since $x_n \notin \mathbb{R}$ we have $h(x_n) > 0$
the other hand since $x_n \notin \mathbb{R}$ we have $h(x_n) > 0$
the other hand since $x_n \notin \mathbb{R}$ we have $h(x_n) > 0$
the other hand since $x_n \notin \mathbb{R}$ we have $h(x_n) > 0$
the other hand $h(x_n) \ge 0$, otherwise there must
and hence $h(x_n) < 0$ which is not possible. This is
exist some $h(x_n) < 0$ which is not possible. This is